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EXECUTIVE SUMMARY 

Numerical simulations of the deformations and breakup of drops have been done. Inertial and 

viscous effects for both the drop and the ambient gas as well as surface tension effects are fully ac- 

counted for. The simulations help determine where in parameter space the various breakup modes 

take place, how long breakup takes, and what the resulting drop size distribution is. The goal of 

the investigation is to provide results that extend and complement experimental investigations, and 

lead to better engineering models of drops in sprays. Simulations of the primary breakup of a flat 

interface have also been done. 

To examine the breakup of drops as the density difference becomes small, extensive axisym- 

metric simulation of four systems have been done: Impulsive and gradual disturbances for two 

different density ratios. At low density ratios, the density disappears as an independent control 

parameter and it can be shown that the low density results apply to density ratios as high as two 

if time is re-scaled using the Boussinesq approximation. In addition to full simulations where the 

Navier-Stokes equations are solved, a few inviscid simulations have also been done to isolate the 

effect of viscosity. 

Four nondimensional numbers govern the breakup of drops. In addition to the density and 

the viscosity ratio, the ratio of inertia to surface tension is described by an Eötvös number for 

gradual disturbances and a Weber number for impulsive acceleration. The effect of viscosity is 

described by the Ohnesorge number (the ratio of the viscous force to the surface tension). The 

simulations have resulted in a fairly complete picture of the evolution at small density ratios. 

For small Eötvös and Weber numbers the drops remain spherical in all cases, independent of 

the Ohnesorge number and the density and the viscosity ratio. If the Ohnesorge number is low, 

the deformations of the drop depend only on the Eötvös/Weber number (and the density ratio). 

As the Eötvös/Weber number is increased, the drops deform into a disk-like shape due to high 

pressure at the fore and aft stagnation points and low pressure around the equator. Increasing the 

Eötvös/Weber number further results in a continuing deformation where most of the drop fluid 

ends up in a torus connected by a thin film.  For moderate Eötvös/Weber numbers, the initial 



momentum of the drops is relatively low and once the torus is formed, the rim moves faster than 

the film for drops with gradual disturbances. The film "bulges" back and experimentally it is 

seen that this bag eventually breaks. The simulations have shown that the bag break-up mode 

is a viscous phenomenon, due to flow separation at the rim of the drops and the formation of 

a wake, and it is therefore not seen in inviscid computation. For drops subject to an impulsive 

acceleration, the formation of a backward facing bag is only seen for the higher density ratios. Bag 

breakup requires a driving force that acts stronger on the drop than on the surrounding fluid and 

for impulsively accelerated drops this driving force is the fluid inertia. As the density difference 

becomes small, the difference between the drop and the fluid inertia vanishes and the low-density 

ratio drops simply stop and surface tension pulls them back into a spherical shape. Experimentally, 

bag breakup is commonly observed for impulsive acceleration, but the density ratio is much larger. 

Increasing the Eötvös or the Weber further results in a different mode of breakup that also depends 

on the density ratio. For low density ratios, the fluid initially still ends up in the rim of the drop, 

but the initial momentum is now sufficiently large so the ambient fluid moves the film faster than 

the torus, leading to a bag that extends forward of the drop. For higher density ratios, not all 

the fluid moves to the rim and a torus that is connected to the rest of the drop by a thin sheet 

is formed. As the driving force is increased the size of the rim is reduced and for very high 

Eötvös/Weber numbers, small drops are pulled from the rim. Examination of the dynamic of the 

vorticity generated at the drop suggests that the shear breakup mode where fluid is stripped from 

the rim of the drop is an essentially inviscid effect. In the transition between a bag breakup mode 

and shear breakup, drops that oscillate in a chaotic manner are sometimes seen. Such transition 

phenomena have been seen experimentally for higher density ratios. In addition to the Ohnesorge 

number effect, where the boundary between breakup modes is shifted to higher Eötvös/Weber 

numbers as viscous effects become more important, the fluid and drop viscosity can change the 

drop shape during breakup if the Ohnesorge number is high enough. High viscosities can, for 

example lead to skirted drops at low density ratios, where thin fluid skirts are pulled from the rim 

of the fluid, in a way similar to the shear breakup seen for higher density ratios. 

The simulations have been used to generate "break-up" maps and it is found that the general 

u 



character of those maps agrees with what has been found experimentally for larger density ratios. 

At low Ohnesorge numbers the transition between the various modes depends only on the density 

ratio and the Eötvös number, but a high Ohnesorge number will move the transition to a higher 

Eötvös number. 

Simulations of three-dimensional aspects of the drop breakup and heat transfer have recently 

been initiated. 

in 
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I. BACKGROUND 

In spray combustion, liquid atomization is a two stage process: In the primary breakup, a 

liquid jet emerging from the injector breaks up into drops which subsequently undergo secondary 

breakup into even smaller drops. Secondary breakup increases the total surface area of the fuel-air 

interface, thus enhancing the rate at which the fuel evaporates and burns. 

Current computational models used for engineering predictions of spray combustion do not 

resolve the motion of individual drops. Instead, the effect of the drops is accounted for by subgrid 

models, computed in either an Eulerian or a Lagrangian way. For recent descriptions and reviews, 

see Drew and Passman1 and Crowe, Sommerfeld, and Tsuji2. In Lagrangian models, the drops 

are represented by point particles, that can be split into two or more particles to represent drop 

breakup. For a description and application of breakup models in spray combustion simulations, 

see Reitz and Diwakar3, O'Rourke and Amsden4, Liu, Mather, and Reitz5, Liu and Reitz6, Kim 

and Wang7, and Kong, Han, and Reitz8. Two different approaches are typically used to model 

the breakup. The Taylor analogy breakup (TAB) model of O'Rourke and Amsden4 is based on 

an analogy between an oscillating and distorting liquid drop and a spring-mass system suggested 

by Taylor9. The Reitz wave instability model6, on the other hand, is based on a linear stability 

analysis for liquid jets. Both of these simplified models contain adjustable parameters that must 

be determined by experimental studies. 

In experiments, the drops are usually accelerated by a shock wave causing a step change in 

the velocity of the drop relative to the surrounding fluid, or by a constant body force such as 

gravity. The results are generally presented in terms of four non-dimensional parameters: the 

relative strength of inertia and surface tension which is characterized by the Weber number for an 

impulsive acceleration and the Eötvös number for an acceleration by a constant body force; the 

ratio of viscous stresses and surface tension given by the Ohnesorge number; the density ratio; and 

the viscosity ratio of the drop and surrounding fluids. 

Early experimental studies of drop breakup due to impulsive acceleration include those of 

Lane10, who studied the shattering of liquid drops in steady or transient streams of air, and Hinze11. 
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The findings of Lane10 and Hinze11 have been extended to a broader range of parameters by 

Haas12, Hanson, Domich, and Adams13, Ranger and Nicholls14, Gel'fand, Gubin, Kogarko, and 

Komar15, Borisov, Gel'fand, Natanzon, and Kossov16, and others. Krzeczkowski17 showed that 

the effect of drop viscosity is not significant when the Ohnesorge number based on the drop prop- 

erties is less than about 0.1. Pilch and Erdman18 examined the fragment size distribution for the 

so-called bag breakup mode and found that it was made up of a large number of small fragments 

produced from the burst of the bag, and a few large fragments originating from the annular rim. 

Wierzba19 reviewed the literature and found that there was a large variation in the reported values 

of the critical Weber numbers for the onset of the bag type breakup. His own experiments showed 

that small changes in the experimental conditions could affect the drop breakup significantly. Ex- 

perimental investigations of the breakup of falling drops have typically been motivated by interest 

in the evolution of raindrops. For early experiments, see the study of the breakup of large drops by 

Magarvey and Taylor20, for example. The secondary breakup of liquid drops due to both impul- 

sive and continuous disturbances has been examined extensively by Hsiang and Faeth21-23 using a 

shock tube and drop towers. The majority of the data are for atmospheric conditions (pd/po > 500, 

Re > 100, Ohd < 0.1), although a limited number of studies for smaller density ratios and higher 

viscosity were also done. For the impulsive disturbance case, droplet deformation and breakup 

maps similar to those produced by Hinze11 and Krzeczkowski17 were constructed for a wide range 

of parameters. Joseph, Belanger, and Beavers24 studied the breakup of both Newtonian and non- 

Newtonian drops in a high-speed air stream. Their experiments, using a shock tube, resulted in a 

very high initial acceleration of drops and the authors stated that the Rayleigh-Taylor instability 

was the primary cause of breakup. For a more extensive review of experimental studies of sec- 

ondary breakup of drops, see Clift, Grace and Weber25, Lefebvre26, Bayvel and Orzechowski27, 

and Sadhal, Ayyaswamy, and Chung28. 

Most of the experimental studies mentioned previously are concerned with the breakup of liq- 

uid drops in air due to impulsive accelerations. The density and viscosity ratios are much higher 

than those considered in the present study. While those experimental results are not directly com- 

parable to our simulations, the major breakup modes remain similar. We therefore summarize the 



major results of experimental studies of impulsively accelerated drops here. When the Ohnesorge 

number is small, the effects of drop viscosity can be neglected. At low We, the drops deform 

but do not break up. As the acceleration increases past a critical value, the drops become pro- 

gressively flatter and eventually break up. As the Weber number is increased, four well defined 

breakup modes are observed (see, for example, Nigmatulin29): 

1. Vibrational breakup mode where the drop disintegrates into two or four equal-sized smaller 

drops. 

2. Bag breakup mode where the original drop deforms into a torus-shaped rim spanned by a 

thin fluid film that ruptures into tiny droplets, followed by disintegration of the rim into 

larger droplets. 

3. Shear breakup mode where small drops are continuously stripped off the rim of the original 

drop. 

4. Explosive breakup mode where strong surface waves disintegrate the drop in a violent man- 

ner. 

This categorization and terminology are somewhat arbitrary, and other variations have been 

suggested by other researchers. For example, mode 3 has also been called "stripping-type 

breakup."18,19 For low viscosity drops where the transition process shows no significant depen- 

dencies on Ohd, the critical Weber number is approximately 10 for the first transition, 20-60 for 

the second, and 1000 for the third. These numbers should be considered only as a rough guide 

because there are large variations in the critical Weber numbers in the available experimental data 

due to different test conditions. At higher Ohd, the We required for the onset of deformation and 

breakup increases with increasing Ohd. 

Other researchers have examined the evolution of liquid drops in another liquid with a density 

comparable to the drop density moving due to gravity. The deformation of miscible liquid drops 

at low Reynolds numbers was studied by Kojima, Hinch, and Acrivos30, who observed that the 

drops form vortex rings. The stability of drops moving in immiscible fluids was investigated by 



Koh and Leal31,32, who showed computational results for zero Reynolds number using a boundary 

integral method and experimental results for low Reynolds numbers. A similar investigation of the 

instability of drops, also using a boundary integral method was reported by Pozrikidis33. Experi- 

ments by Baumann, Joseph, Mohr, and Renardy34 showed that vortex rings can also be created in 

immiscible liquids. 

A few investigators have simulated the deformation and breakup of liquid drops numerically. 

However, due to the difficulties in dealing with large deformation of the interface and in accurately 

including surface tension along with viscous and inertial forces, such numerical simulations have 

often been based on considerable simplifications. The steady motion of deformable axisymmetric 

drops was investigated by Dandy and Leal35 at several Reynolds and Weber numbers using a 

finite-difference method. The steady rise of an axisymmetric drop in an unbounded surrounding 

fluid was examined by Volkov36 for intermediate Reynolds numbers. Bozzi, Feng, Scott, and 

Pearlstein37 presented finite element simulations of the steady motion of axisymmetric drops in 

bounded domains. Fritts, Fyre, and Oran38 applied a two-dimensional Lagrangian finite difference 

method to simulate the breakup of fuel droplets and Liang, Eastes, and Gharakhari39 presented 

simulations of axisymmetric drop breakup using a Volume-of-Fluid method for a limited number 

of cases. Other numerical studies of the deformation and breakup of two-dimensional drops can 

be found in Deng and Jeng40, Deng, Liaw, and Chou41, Seung, Chen, and Chen42, and Zaleski, Li, 

and Succi43. However, these numerical results are still preliminary. 

In spite of the progress made by previous investigators, several aspects of the secondary 

breakup are still not well understood, including the breakup of drops at high pressure and tem- 

perature, where experimental difficulties are encountered. It is also necessary to more closely 

examine the time dependent characteristics of the breakup. In existing spray models, the drop 

breakup is considered to occur instantaneously. Recent experimental evidence indicates, however, 

that secondary breakup occurs over a finite amount of time. Therefore, it is possible that the drop 

breakup should be treated as a time-dependent process. 

In this paper, a numerical method based on a front tracking technique that can accommodate 

large deformation of the drops is developed to simulate the breakup of liquid drops accelerated by a 
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constant body force. The governing equations for axisymmetric geometry are solved numerically 

on a non-uniform grid using a finite difference method. The drop interface is represented by 

connected marker points, whose positions are updated explicitly at each time-step. Results for a 

wide range of parameters are presented, and the physical significance of the results is discussed. 

H. FORMULATION AND NUMERICAL METHOD 

The physical problem and computational domain are sketched in Figure 1; the left boundary 

is the axis of symmetry. We follow the motion of the fluids both inside and outside the drop 

and write a single set of equations for the whole flow field, using the conservative form of the 

governing equations to allow the density and viscosity to change discontinuously. Surface tension 

is added as a delta function to provide the proper interface boundary conditions. Written for an 

axisymmetric coordinate system, the Navier-Stokes equations are: 

dpu     1 drpv?     dpvu _ 
dt      r   dr dz 

dp      d (    du\     n   d fu\      d    fdv     du\ 
-Yr+Yr[2^)+2^r[r)+Vzß{d-r + d-Z 

— / GKn5(x — Xf)dS • ir 

dpv     1 drpuv     dpv2 _ 
dt      r   dr dz 

dp     Id     fdv , du\      d (    dv' 
~di; + 7¥r»r{fr + ^) + d-z[2f*d-z, 
— / <7Kn5(x — x/)dS • iz — paz 

Js 

(1) 

(2) 
is 

Here, u and v are the velocity components in the radial and axial directions, p is the pressure, and 

p and p, are the discontinuous density and viscosity fields, a is the surface tension, K is twice the 

mean curvature, \T and iz are the radial and axial components of the surface unit normal vector 

pointing outward from the drop, and 5 is a three-dimensional delta function. In (1) and (2), the 

surface tension is treated as a body force. The integral over the surface of the drop, S, results in 

a force that is smooth and continuous along the drop surface. In the numerical method, the delta 



function, 6, is approximated by a smooth function with a compact but finite support. The constant 

acceleration gives rise to a body force in the axial direction denoted by paz. 

The above equations are supplemented by the incompressibility condition: 

ldru + dv=0 (3) 

r dr      dz 

which, when combined with the momentum equations, leads to an elliptic equation for the pres- 

sure: 

where R is the divergence of the vector form of the momentum equations (1) and (2), excluding 

the pressure term. 

We also have equations of state for the physical properties of the drop and the surrounding 

fluid: 

^ = 0;^ = 0 (5) 
Dt        ' Dt 

where D/Dt is the material derivative. These two equations state that the physical properties of 

each fluid remain constant. 

Dimensional analysis shows that four independent dimensionless parameters govern the dy- 

namics of drop deformation and breakup. When the drop is subject to an acceleration by a con- 

stant body force, it is convenient to use the Eötvös number, Eo (interchangeably called the Bond 

number, Bo) and the Ohnesorge number of the drop, Ohd, defined as: 

Eo=£^! (6) 
a 

Ohd = -p== (7) 

where A/? is the density difference between the drop and the surrounding fluid and D is the initial 

diameter of the drop. The density and the viscosity ratios: 

2±- &L (8) 
Po '  ßo 



can be selected as the other two parameters. The viscosity ratio is sometimes replaced by the 

Ohnesorge number based on the properties of the surrounding fluid: 

Oh0 = -p= (9) 

The subscripts, d and o, denote the properties of the drop and the surrounding fluid, respectively. 

Time is non-dimensionalized with respect to the drop diameter and the acceleration: 

t* = -J— (10) 
yjD/az 

For drops subject to impulsive acceleration, the Weber number, We defined by: 

We = ^lR (11) 
a 

is used in place of the Eötvös number and the Ohnesorge number is often replaced by the Reynolds 

number defined by: 

Re = ^ (12) 

Here, U is the initial relative velocity between the drop and the surrounding fluid. Time is non- 

dimensionalized with the diameter and the initial relative velocity: 

t* = -— (13) 
1       (D/U) 

The numerical technique used for the simulations presented here is based on the front- 

tracking/finite difference method discussed in Unverdi and Tryggvason44. The code employed 

in the present study is an axisymmetric version of the method. Since the axisymmetric code runs 

much faster than the fully three-dimensional version, it allows more runs and higher resolution. 

To improve the efficiency of the computations, the method was implemented on stretched grids to 

allow clustering of grid points in specific regions. 

The momentum equations and the continuity equation are discretized using an explicit second- 

order predictor-corrector time-integration method and a second-order centered difference approx- 

imation for the spatial derivatives. The discretized equations are solved on a fixed, staggered grid 



using the Marker-and-Cell method developed by Harlow and Welch45. The full-slip boundary 

condition is applied to all four boundaries. 

To maintain a well defined boundary between the drops and the surrounding fluid, the boundary 

is marked by connected points (the front) that are advected by the fluid velocity, interpolated from 

the fixed grid. The new position of the marker points is used to construct a new density field 

by distributing the density jump to the grid points next to the front using area weighting, and 

integrating the jump to find the density everywhere. Once the density is known, the viscosity is 

set as a function of the density. The marker points are also used to find the surface tension, which 

is then assigned to the nearest grid points in the same way as the density jump, and added to the 

discrete Navier-Stokes equations. For a more detailed description of the front tracking method, 

see Unverdi and Tryggvason44 and Tryggvason, Bunner, Ebrat, and Tauber46. 

The implementation of the numerical technique to the drop breakup problem is straightforward 

and the method works well for a broad range of parameters. However, as pd/p0 is raised, the com- 

putational cost increases, partly because of the appearance of the coefficient 1/p in the pressure 

equation (4) but also because the effect of the surrounding fluid is weaker when the density ratio 

is large and the drop travels a longer distance before breaking up. In order to avoid having to 

use a very long computational domain, we move the computational domain with the drop. The 

motion of the domain is determined from the solution, and an extra acceleration term is added to 

the governing equations to account for the time dependent motion of the domain. The boundary 

conditions have also been modified to include a constant inflow at the bottom and a zero velocity 

gradient in the normal direction at the top. 

The majority of the simulations presented here were carried out on HP 9000 workstations. A 

typical run required between 4000 and 120000 timesteps and took 12-240 hours, depending on 

the parameters of the problem. 

To address to what extend the observed drop evolution can be described by an inviscid model, 

a few simulations were done using a vortex method. The interface separating the drop and the 

surrounding fluid is a vortex sheet and an evolution equation for the vortex sheet strength 7 = 

(ud - u0) • s can be derived by subtracting the tangential components of the Euler's equations on 
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either side of the interface. The resulting equation is (see, for example, Tryggvason47): 

£>7       &U n.,dU      ,  197%     _o__dK 

Here, A = (pd + p0)/pd + Po is the Atwood number, U = (1/2) (ud + u0) is the average of the 

velocities on either side of the vortex sheet, and K is the mean curvature. 

Given the vortex sheet strength 7, the velocity is found by the Biot-Savart integral. For com- 

putational purpose, the axisymmetric vortex sheet is discretized by a finite number of vortex rings. 

The azimuthal integration can be done analytically and the integral is therefore replaced by a sum- 

mation over the discrete vortex rings. The radial and axial velocity at point on ring j is given 

by 

^^l"'^^^)^^^ (15) 

T/=i(4rir')3/ LV        1~ktj        ) 

Here K{k) is the Complete Elliptic integral of the first kind, E{k) is the Complete Elliptic integral 

of the second kind, and 

2Vn r, 
klj = *V'"J (17) 

The Elliptic integrals can be computed efficiently by a polynomial approximation. When the 

axisymmetric vortex sheet is replaced by discrete vortex rings, the rings must be given a finite core 

size to avoid infinite self-induced velocity. This can be accomplished simply by replacing ku by 

jfc, • = 2v/ff^ (18) 
1     ^(r, + vif + {ZJ - zty + 6* 

where 8 is a small regularization parameter. In the limit of N -» 00 and 5 -» 0 the solution will 

be independent of the exact value of 5 (except at isolated points where roll-up takes place). 

III. ACCELERATION BY A CONSTANT BODY FORCE 

Numerical simulations are presented first for pd/p0 = 10, using a moving computational do- 

main. .To examine the effect of the density ratio, simulations are also carried out for a small density 



ratio, pdfpo = 1.15, using a fixed computational domain. For each density ratio, the effects of 

varying the other dimensionless parameters, Eo, Oh0, and Ohd, are studied. 

A. Validation 

In order to validate the numerical method, grid refinement tests were performed. Typical results 

are presented in Figure 2 where the shape of the drop is plotted at time intervals At* = 3.873, using 

two different grids: 256 x 512 (left) and 512 x 1024 (right). The non-dimensional parameters 

are pd/p0 = 1.15, Eo = 144, Oh„ = 0.05, and Ohd = 0.0466. Initially (t* = 0), the drops 

are spherical and the velocities are zero everywhere. Despite the large deformation of the drop, 

the results agree well. In Figure 3, the aspect ratio and the centroid velocity are plotted versus 

non-dimensional time. The aspect ratio is defined as the maximum width of the drop divided by 

its thickness at the centerline. The centroid velocity is found by taking the volume average of 

the vertical velocity inside the drop. The results corresponding to Figure 2 are shown along with 

results using a coarser grid: 128 x 256. The result from the 128 x 256 grid shows a small difference 

but the two finer grids give nearly identical results. 

In addition, we have compared our results to the steady state results for a single axisymmetric 

deformable drop computed by Dandy and Leal35. They specified the Reynolds number and the 

Weber number and found the drag coefficient, Cd, as a part of the solution. In our transient 

simulation, it is not possible to specify Re and We a priori, since the velocity of the drop is 

computed as part of the solution. However, once the drag coefficient is known, the Eötvös number 

and Ohnesorge number can be found by: 

Eo = \weCd ; Oh0 = ^ (19) 

For a drop translating at a Reynolds number equal to 100 and Weber number equal to 4, with 

Pd/Po = 0-91 and \idjii0 = 1, Dandy and Leal35 found Cd = 0.919 in an unbounded domain. This 

gives Eo = 2.75 and Oh0 = 0.02. Our computation was done using a 256 x 768 grid in a domain 

5 and 15 times the initial diameter of the drop in the radial and axial directions, respectively. 
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The computed Reynolds and Weber numbers differ from those given by Dandy and Leal35 by 

less than 1% when the drop reaches steady state. For ßd/p-o = 4 and the same Re, We, pd/p0 

as in the previous case, Dandy and Leal35 found Cd = 1.10. Our computation was done using 

Eo = 3.3, Oh0 - 0.02, and the same pd/p0 and ßd/Vo, with the same resolution and domain size 

as in the previous case. The result gives Cd = 1.13, which is approximately 3% higher. This is 

due to the finite size of our computational domain. Computations using domains of half and twice 

the original size in the radial direction yield Cd = 1.19 and 1.12, respectively. 

B. The Boussinesq approximation 

Before presenting further computational results, we pause to examine the validity of the 

Boussinesq approximation. The Boussinesq approximation states that if the density difference 

is small, density variations are only important when multiplied by gravity. Ap is therefore no 

longer an independent parameter and it is sufficient to simulate the breakup for only one value of 

the density ratio in this limit. Results for other values of Ap can be obtained by simply rescaling 

time. For a discussion of the Boussinesq approximation to stratified flows, see, for example, Dahm, 

Scheil, and Tryggvason48. The relative magnitude of the density difference is better expressed by 

the Atwood number, defined by: 

A = Pd-Po (20) 
Pd + Po 

When A is sufficiently small (pd/p0 -> 1), time and velocities can be scaled by the average static 

pressure to yield: 

t=    ,    * (21) 
jD/(Aaz) 

u 
u = —===:        v = 

y/Al^D' yfMzD 

The Eötövs number and the Ohnesorge number must also be redefined as: 

(22) 

Eo = 
a 
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Oh0 = ^= (24) 

where pav = 0.5(pd + p0). Note that the constant acceleration appears only as Aaz instead of az 

alone. 

In order to check the validity of the Boussinesq approximation, tests were done for different 

values of A. In Figure 4, results for Eo = 72, Oh0 = 0.241, and pd/p0 = 1 are presented. 

The computation was done using a 256 x 768 grid and the size of the computational domain was 

5 and 15 times the initial drop diameter in the radial and the axial direction, respectively. The 

aspect ratio a and the non-dimensionalized centroid velocity Vc are plotted versus i in (a) and 

(b), respectively. In each graph, simulations using four values of A are shown: 0.07, 0.11, 0.2, 

and 0.33, corresponding to the density ratios: 1.15, 1.25,1.5, and 2.0. The plots confirm that the 

scaling works well when A is less than about 0.2 to 0.3. The ability to cover this density range by 

a single simulation is obviously a considerable simplification. 

C. Effect of Eo at small Oh 

When Oh is small and surface tension is much more important than viscous stresses, Oh has 

little influence on the breakup and Eo is the only controlling parameter. Here, we present results 

for different Eo when Oh is small. When a drop is set into motion by a constant body force, the 

hydrodynamic pressure is higher at the poles and lower at the equator and the drop deforms into 

an oblate ellipsoid. This deformation is opposed by the surface tension. Depending on the relative 

strength of the pressure forces and the surface tension, measured by Eo, different breakup modes 

are observed. 

In Figure 5, the effect of Eo is presented for pd/p0 - 10 and Oh0 = Ohd = 0.05. The 

simulations are done using a moving coordinate system where the origin is fixed at the centroid 

of the drop. The domain has dimensions of five and fifteen times the initial drop diameter in the 

radial and axial directions, respectively. The centroid of the drop is fixed at a position five times 

the initial drop diameter above the bottom boundary. The evolution of the drop is shown for nine 

different values of Eo (a to i). In each column, the drop interface is plotted at fixed time intervals. 
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The separation between two successive drops is equal to the distance that the drop travels during 

the time interval. 

In (a), the drop is shown for Eo = 12. As the drop starts falling, the back side becomes flat 

while the front side retains a rounded shape. After the initial deformation, the drop reaches a steady 

state and no further change in the drop shape is seen. When Eo is increased to 24 in (b), the drop 

deformation is more pronounced. Initially, the drop assumes a shape similar to that shown in (a), 

but then the back of the drop becomes increasingly more convex and eventually the drop deforms 

into a thin disk-like shape that moves at a nearly steady state. The drop shown in (c) for Eo = 28.8 

evolves in the same way until it has deformed into a disk-like shape. Then the thickness of the 

drop near the symmetry axis continues to decrease, and most of the drop fluid moves outward 

toward the edge of the drop. Finally, the center of the front surface is pushed upward, forming a 

backward-facing bag. At this stage, most of the drop fluid is contained in the annular-shaped rim. 

As time progresses, the bag expands both radially outward and vertically upward. Experimental 

evidence indicates that the drop will eventually break into small drops. The evolution shown in (d) 

for Eo = 36 is very similar to that in (c), displaying a backward-facing bag. The only difference 

is that the rate of deformation is higher and the backward-facing bag expands more rapidly. 

When Eo is further increased to 48 in (e), a different mode of breakup is observed. The initial 

deformation is not very different from the previous cases, and an indentation develops on the back 

surface, but instead of deforming into a disk-like shape, the drop remains relatively thick near the 

symmetry axis and the edge of the drop is swept back in the downstream direction. A large wave 

then develops on the drop interface and as this wave propagates, the drop deforms in an erratic 

manner. The evolution of the drop shown in (f) for Eo = 60 reveals another mode of deformation. 

The initial evolution is similar to the previous cases, but the results are different at later times. As 

the indentation at the top progressively deepens, the drop does not deform into a thin disk-like 

shape. Instead, the edge of the drop is deflected in the downstream direction and drawn out into a 

thin film with a blob of drop fluid at the end. The appearance of this film is similar to the skirted 

drop shapes observed in experimental studies of liquid drops moving at steady state (Wairegi and 

Grace49). The center portion of the drop, however, maintains a convex shape and its thickness at 
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the symmetry axis stops decreasing. Similar drop deformations are observed at even higher Eo= 

72,96, and 144 as shown in (g), (h), and (i), respectively. 

Based on these results, the evolution of drops with pd/p0 = 10 at a small Oh can be classified 

into four categories in order of increasing Eo: steady deformation, formation of a backward-facing 

bag, transient breakup with a complex shape, and stripping or shearing of a film from the edge of 

the drop. It is evident from Figure 5 that drops breaking up in the backward-facing mode travel 

a much longer distance than those breaking up in the shear breakup mode. Also note that for the 

same breakup mode, the rate of drop deformation increases as Eo increases. 

In Figure 6, the evolution of a drop with a small density ratio, pd/p0 - 1.15, is shown for 

different Eo. Again, values of Ohnesorge numbers, Oh0 = 0.05 and Ohd = 0.0466 are chosen so 

that viscous stresses are small compared to surface tension. The computations were done using a 

fixed coordinate system. When Eo is small, the drop deforms into an oblate ellipsoid and moves 

with a steady state shape as shown in (a) for Eo = 12. When Eo is increased to 24 (b), the drop 

deforms more and eventually forms a backward-facing bag as observed for pd/p0 = 10 in Fig- 

ure 5(c). In (c), where Eo is 48, the drop moves with an essentially steady convex shape, showing 

no sign of bag formation. Compared to its high density ratio counterpart shown in Figure 5(e), the 

overall deformation is reduced. When Eo is 96 in (d), the indentation at the back of the drop deep- 

ens continuously until it reaches the front of the drop, creating a forward-facing bag. Eventually, 

however, the heavier edge falls faster than the thin bag. This formation of a forward-facing bag is 

different from the shear breakup mode observed in Figure 5(f)-(i), where a significant portion of 

the fluid remains near the symmetry axis while a thin film is pulled away from the edge. In (e), 

Eo is further increased to 144. The overall evolution is similar to (d), but the rate of deformation 

is slightly faster. 

In Figure 7, vorticity contours (left) and streamlines with respect to a frame moving with 

the drop (right) are plotted at a few selected times for the drop shown in Figure 5(c). Most of 

the vorticity is created at the outer edge of the drop, as expected, and the streamlines show the 

formation of a large wake behind the drop. The pressure difference between the front stagnation 

point and the wake causes the formation of the backward-facing bag. 
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Figure 8 shows vorticity contours (left) and streamlines (right) at a few selected times for the 

drop shown in Figure 5(f). Although vorticity generated at the drop surface accumulates into a 

large wake as in Figure 7, the more deformable drop is continuously deformed by the flow (as 

seen by streamlines crossing its boundary) and the edge is pulled back by the flow. In the last 

frame, the large wake formed initially separates from the drop, leaving the film to move toward 

the axis due to the flow around the smaller remaining drop. 

In Figure 9, vorticity contours (left) and streamlines (right) are shown for the drop shown in 

Figure 6(e). Here, the vorticity generated at the interface moves with the drop, forming a dipole 

that continuously deforms the interface into a forward facing bag. 

Figures 10 and 11 show the centroid velocity of the drop Vc plotted versus t* for the drops 

shown in Figures 5 and 6, respectively. Since the velocity is non-dimensionalized by y/azD, the 

graphs for different values of Eo all have the same initial slope. After the initial acceleration, the 

drop deformation, which depends on Eo, determines the velocity. In Figure 10, drops with low Eo 

deform less and therefore move faster than drops with high Eo. The lowest Eo drop {Eo = 12) 

asymptotically reaches a steady state velocity, but the other drops all slow down as they start 

deforming. The Eo = 24 drop also reaches a steady velocity. The drops that undergo bag breakup 

first behave like the Eo = 24 drop, but as the bag forms, the drops slow down rapidly. At the very 

end, the Eo = 36 drop speeds up again, as the rim of the drop starts falling independently of the 

bag. The rest of the drops all slow down rapidly as they are stretched perpendicular to the flow, and 

all speed up again as the thin film pulled from their edges folds back toward the axis. The results 

for the small density difference in Figure 11 show a similar trend, but with a few differences. The 

transient drop (Eo = 48) reaches a velocity that is nearly the same as the velocity of the drop 

moving with a steady deformed shape (Eo = 12) and the reduction in speed due to bag breakup is 

smaller than in Figure 10. 

In Figures 12 and 13, the surface area S (normalized by the initial value S0) is plotted versus t* 

for the drops shown in Figures 5 and 6, respectively. The graphs for pd/p0 - 10 in Figure 12, show 

that a rapid increase of the surface area takes place when breakup occurs, and that the backward- 

facing bag breakup mode takes longer than the shear breakup mode. The drops undergoing a shear 
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breakup show a reduction in surface area when the film moves toward the symmetry axis. The 

graphs for pd/p0 = 1.15 in Figure 13 also display a rapid increase of the surface area when the 

drops break up. However, the drops with the highest Eo show a rapid increase in surface area after 

the rim starts falling, and the surface area of the drop undergoing bag breakup grows relatively 

slowly compared to the higher density ratio drops. 

D. Effect of Oh 

Figure 14 illustrates the effect of the Ohnesorge number (O/i-the non-dimensional viscosity) 

for drops with a finite density ratio, pd/p0 = 10. The drops are shown at several stages. Here, 

Ohd is equal to Oh0. The case where Ohd is different from Oh0 will be discussed in the next 

section. In the top row (a-c), Oh = 0.05, 0.125, and 0.25, from left to right, and Eo = 28.8. The 

Oh = 0.05 case (a) has already been shown in Figure 5(c), but is included here for comparison. 

The initial deformation of all three drops is similar, but whereas the Oh = 0.05 drop (a) deforms 

into a backward facing bag, the other two drops reach a steady state shape. Of those, the less 

viscous drop (b) is flatter. 

In the bottom row (d-f), Eo is increased to 144 and the evolution of the drops is presented 

for the same three values of Oh as in the top row. In (d), the drop already shown in Figure 5(i) is 

included for reference. This drop undergoes a so-called shear (or boundary stripping) breakup. The 

Oh = 0.125 drop (e) shows a similar evolution as the drop in (d), although the rate of deformation 

is reduced slightly. The center portion of the drop still contains a significant amount of drop fluid 

and formation of a backward-facing bag, which requires the formation of a very thin film of fluid 

near the symmetry axis, does not occur. In contrast, the center portion of the drop in (f) is drained 

completely, and the drop forms a backward facing bag. 

Based on the results shown in Figure 14, it is clear that increasing both Oh0 and Ohd simulta- 

neously results in a translation of the boundaries between the breakup modes to higher Eo. 

Figure 15 illustrates the effect of viscosity on the initial deformation of drops with pd/p0 = 

1.15. In addition to runs with a finite viscosity, we show simulations with zero viscosity, obtained 
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by an axisymmetric vortex method (see Dahm, Frieler, and Tryggvason50). In the top row, Eo = 24 

and Oh0 is 0.05, 0.025, 0.01 and 0 from left to right. In all cases, fid/n0 = 1. While the initial 

acceleration is dominant, all the drops evolve in the same way. As time progresses, viscosity 

effects become important and the viscous drops will eventually develop a backward-facing bag 

due to the formation of a wake. See Figure 6(b) for further deformation of the drop in (a). The 

inviscid drop (d), on the other hand, loses fluid to a film pulled off its edge. Since this drop does 

not develop a vortical wake, it does not form a backward facing bag. Similar deformation is also 

seen for inviscid bubbles51. 

In the bottom row, the limit of zero surface tension, i.e. Eo = oo is investigated. Since Oh0 is 

defined with the surface tension in the denominator, it cannot be used as a measure of viscosity in 

this case. Instead, another non-dimensional number is defined: 

A = ^° = —L (25) 
Vp0ApD3az      VAr 

where Ar is the Archimedes number. Results for three values of ß =0.01021 (e), 0.00513 (f), and 

0.00204 (g) are compared with results for ß = 0 (h). In all cases, //d///0 = 1. From the plots, it 

can be seen that since there is no surface tension limiting the deformation, all the drops evolve in 

a similar way: first an indentation forms at the top, then the drops deform into a forward-facing 

bag with a thick edge. The effect of ß on the overall shape of the drop is relatively small, with the 

exception of the rollup of the edge which increases as ß is reduced. 

E. Effect of the viscosity ratio 

The results presented so far are all for drops moving in another fluid that has the same or almost 

the same viscosity. The effect of the viscosity ratio is shown in Figure 16, where the drops are 

shown for several values of the governing parameter. In (a) and (b), pd/p0 = 10 and Oh0 — 0.05. 

Eo is 72 in (a) and 144 in (b). In each row, the drop shape is shown at a fixed t* for Ohd = 0.05, 

0.125,0.25, and 1.25, increasing from left to right. The evolution of the drops in (a) is qualitatively 

similar for the three lower values of Ohd. They all show a shear breakup mode in which a film 
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of drop liquid is pulled away from the edge of the drop. The drop with the highest Ohd in the 

rightmost column, however, has not progressed as far, and will eventually form a forward-facing 

bag. The comparison in (b), for Eo = 144, shows the trend observed in (a). Comparisons for 

drops with pd/p0 = 1-15 are presented in (c) and (d). In (c), Eo = 24 and Oh0 = 0.05. The drops 

are shown for Ohd=0.0093,0.0466,0.2331, and 1.1656 (from left to right) at t* = 63.2. The drops 

with the three lower viscosity ratios form a backward-facing bag and the drop deformation is most 

pronounced when the viscosity ratio is smaller. In contrast, the most viscous drop develops a 

steady disk-like shape. In (d), Eo - 144 and Oh0 = 0.25 and the drops are shown for four 

different values of the drop Ohnesorge numbers, Ohd = 0.0093,0.0466,0.2331, and 1.1656 (from 

left to right) at t* = 27.1,27.1,46.5, and 62.0, respectively. The times are not the same because 

as the viscosity ratio increases, the drops deform much more slowly. Here, the edge of the drop 

is pulled backward into a thin skirt for the three lower viscosity ratios. The most viscous drop, 

Ohd = 1.1656, does, on the other hand, form a backward-facing bag. 

In Figure 17, the evolution of the centroid velocity is plotted for the drops shown in Figure 16. 

Initially, while the drops are nearly spherical, acceleration is independent of the viscosity of the 

drop fluid. As the drops start deforming, they slow down due to increased drag. For the drops with 

Pd/po = 10 shown in (a) and (b), the higher viscosity drops deform more slowly and therefore 

move faster. At a later time, however, the most viscous drop in (a) forms a backward facing bag 

and slows down continually. In (c), where the density ratio is lower, the most viscous drop reaches 

a steady state shape and velocity. The other drops all form bags and are relatively unaffected by 

changes in the drop viscosity. In (d), the low viscosity drops speed up again, once a skirt has been 

pulled off their edges, indicating that the skirt has no significant effects on the motion at this stage. 

The most viscous drop, on the other hand, forms a backward facing bag and continues to slow 

down. 

Increasing the drop viscosity reduces its rate of deformation and in some cases, this can result 

in different breakup modes, changing a shear breakup to a bag breakup, and a bag breakup to a 

steady-state shape. 
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F. Deformation and breakup regime maps 

To summarize the results of the various simulations, deformation and breakup maps are pre- 

sented in Figures 18 and 19. In the maps, we mark the location of each simulation in the Ohd- 

Eo plane, using a different symbol, depending on the deformation and breakup mode observed. 

Similar breakup maps have been used to present experimental results by numerous investigators. 

Figure 18 shows the result of simulations with pd/p0 = 10.. Three maps are shown (a-c), corre- 

sponding to different ambient Ohnesorge numbers. 

The map for a relatively small Oh0 = 0.05 (a) shows that increasing the magnitude of Eo 

at a fixed drop Ohnesorge number (Ohd = 0.05) results in the following transitions between 

the different breakup modes: oblate ellipsoid ->• backward-facing bag mode ->• transient breakup 

-» shear breakup mode. Changing Ohd for a fixed Eo, on the other hand, yields only minor 

differences in the breakup mode. Increasing Ohd from 0.05 to 1.25, when Eo is fixed at 28.8, 

for example, does not change the breakup mode. For Eo - 72 and 144, a change from a shear 

breakup mode to a forward-facing bag mode is observed, as Ohd is increased from 0.25 to 1.25. 

The difference between these two breakup modes is, however, not as significant as that between 

the backward-facing bag and the shear breakup modes. 

When Oh0 is increased to 0.125, map (b), the increased viscosity of the surrounding fluid 

slows the drop down and reduces the rate of deformation. At Ohd = 0.05, increasing Eo yields 

the following transitions between breakup modes: deformed drop -> backward-facing bag ->• 

shear breakup. When the boundaries between these breakup modes are compared to the same 

Ohd in map (a), some differences are observed. The backward-facing bag, which was observed 

at Eo = 28.8 in (a), is now seen at Eo = 36. At Eo = 48, the transient breakup is no longer 

observed and instead we see a backward-facing bag. 

The effect of changing Ohd at a fixed Eo is also examined in (b). When Eo = 28.8, changing 

Ohd from 0.05 to 1.25 results in only minor differences. The Ohd = 0.05 drop displays a prolate 

shape after an initial oscillatory motion but drops with higher Ohd deform into oblate ellipsoids 

with an indentation (or a dimple) at the top. At Eo = 72, the effect of changing Ohd is more 
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significant. Only the Ohd = 0.05 drop shows a shear breakup mode, while the higher Ohd drops 

all form a backward-facing bag. At Eo = 144, on the other hand, the breakup modes are generally 

similar to those observed in (a), showing no significant change with Ohd. 

When Oh0 is increased to 0.25 in map (c), the effect of the drop viscosity becomes more 

significant. At Eo = 28.8, four simulations with Ohd ranging from 0.05 to 1.25 show deformed 

drops, which are similar to those observed in (b) at the same Eo. At Eo = 72, four simulations 

with Ohd in the same range all show the formation of a backward-facing bag. This is different 

from the result in (b) for the same Eo, where the shear breakup mode changes to a backward- 

facing bag mode as Ohd increases. At Eo = 144, only the Ohd = 0.05 drop shows the shear 

breakup mode seen in (a) and (b). The Ohd = 0.125 drop deforms into a forward-facing bag and 

the higher Ohd drops display a backward-facing bag mode. 

In Figure 19, deformation and breakup regime maps are presented for drops with pd/p0 = 1.15. 

Three maps are shown in (a)-(c), for ambient fluids with Oh0 = 0.05,0.25, and 1.25. The map 

for Oh0 - 0.05 (a), displays the following transitions between breakup modes as Eo is increased: 

oblate ellipsoid -> backward-facing bag -> oscillating indented drop -> forward-facing bag. It is 

clear that increasing Ohd has no major effects. The only exception is when Ohd becomes large 

(> 1) and Eo is relatively low. In this case, the backward-facing bag breakup mode is replaced by 

a steadily moving indented drop. 

When Oh0 is increased to 0.25 (b), a backward-facing bag mode is no longer observed when 

Eo = 24. Instead, a steadily moving indented drop is seen for the Ohd range investigated. The 

breakup mode at Eo = 144 also changes from a forward-facing bag mode to a skirted drop when 

Ohd is small (< 1). A forward-facing bag mode is observed at Eo = 288. As in (a), no noticeable 

effects of changing Ohd, at a fixed Eo, are observed as long as Ohd < 1. When Ohd > 1, the drop 

develops a backward-facing bag when Eo = 144. 

In map (c), Oh0 = 1.25 and the high viscosity prevents nearly all deformation. When Eo = 24, 

the drop remains an oblate ellipsoid but for Eo = 144, the drops develop an indentation at the back. 

The indentation of the more viscous drop (Ohd = 1.1656) deepens continuously until it reaches 

the bottom surface of the drop, forming a vortex ring. 
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G. Conclusions 

The deformation and breakup of axisymmetric drops, accelerated by a constant body force, 

have been studied by numerical simulations. Results are presented for two density ratios, 

Pd/po = 1-15 and pd/p0 = 10. For the lower density ratio, the Boussinesq approximation is valid 

and the results therefore apply for other low density ratios by the simple rescaling discussed in 

section m. For low Ohnesorge numbers, the Eötvös number and the density ratio are the main 

controlling parameters. At low density ratios the drop deforms, but does not break up for Eo less 

than about 18. For 18 < Eo < 36 (approximately), the drop breaks up by the formation of a back- 

ward facing bag. Transient breakup is observed for Eo around 48, and at Eo larger than about 60, 

the drop evolves into a forward facing bag. 

The formation of a forward-facing bag takes place very quickly (the drop has moved only 3-4 

times its initial diameter when the bag is formed) and is essentially an inviscid phenomenon. The 

formation of a backward-facing bag, on the other hand, takes significantly longer (the drop has 

moved 8-10 times its initial diameter). A comparison with results obtained by an inviscid vortex 

method shows that the backward facing bag is a viscous phenomenon, due to the formation of a 

low pressure wake behind the drop. Furthermore, the surface area of the drop increases at a faster 

rate in the forward-facing bag mode. 

As Oh is increased, the effect of the viscosity reduces the rate of deformation. At low Eo, 

while the drop flattens, its center does not drain completely and backward-facing bag does not 

form. As Eo becomes larger, the edges of the drop are pulled outward and sheared off, leading to 

a "skirted" drop. 

When Oh becomes very large, the drop deforms into an oblate ellipsoid at low Eo. At high Eo, 

baroclinically generated vorticity causes indentation of the back of an accelerated drop, but rapid 

diffusion of vorticity prevents the roll-up observed for lower Oh. As this indentation continues 

to grow, the drop finally breaks into a torus. Similar evolution has been seen in simulations of 

initially oblate drops in Stokes flow (Koh and Leal31, Pozrikidis33). 

The effect of the viscosity ratio is small when Oh0 is small. Although there are differences in 
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the detailed shape of the drop, the overall evolution is generally similar when Ohd is varied at fixed 

Eo and Oh0 unless Ohd is very large. For larger Oh0, the effect of the viscosity ratio becomes 

more significant and as Ohd increases, the boundaries between the different breakup modes are 

moved to higher Eo. 

At higher density ratio (pd/p0 = 10) the evolution is similar to the low density ratio case and 

the effect of the governing parameters is also similar. There are, however, a few important differ- 

ences. At large Eo, the forward facing bag seen for the low density case is replaced by a shear 

breakup mode where the edge of the drop is pulled in the downstream direction, forming a blob of 

drop fluid connected to the main drop by a thin film. The skirted drop in the low density ratio case 

is similar in shape (except that no blob was formed). The skirt, however, appears only at a rela- 

tively higher Oh and grows slowly once it has formed. In contrast, the shear breakup mode in the 

higher density ratio case occurs across the Oh range investigated here. The boundaries between 

the breakup modes at low Oh remain essentially the same as for the low density ratio case. 

In most practical combustion systems, the density difference between the liquid fuel and the 

high pressure gas is considerably smaller than at atmospheric temperature and pressure. For diesel 

engines, pd/p0 = 32 - 53, for example, (see Heywood52) and pd/p0 of order unity is common 

in rocket motors. Nearly all experimental studies of secondary breakup of drops, however, have 

been done at atmospheric pressures. The present study approaches the breakup problem from 

the small density ratio limits, thus complementing previous work. Covering the gap for density 

ratios between those studied here and the experiments is within the range of present computational 

capabilities, but requires considerably longer computational times. 

IV. IMPULSIVE ACCELERATION 

The breakup of drops subject to impulsive acceleration has been examined for two density 

ratios (pd/po = 1.15 and (pd/p0 = 10). As shown in the last section, a simple rescaling of time 

allows the results for the lower density ratios to be applied for density ratios up to about 2. The 

evolution has been examined for several Reynolds and Weber numbers. 
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A. Results 

Figure 20 shows the evolution of drops with We = 2.73,13.7,27.4,54.7, and oo. The density 

ratio is pd/p0 = 1.15, the Reynolds number is fixed at 331, and the viscosity ratio is 1. The 

computation was done using a 128 x 256 grid and the drop contours are shown at selected times. 

The low Weber number drop in (a) oscillates due to the high surface tension. As We is increased 

to 13.7, the drop starts to develop an indentation at the top as shown in (b) but as it falls, the 

momentum of the drop decreases and the surface tension causes it to oscillate. The drop shown 

in (c) for We = 27A also deforms into an indented ellipsoid initially. The indentation deepens 

progressively and later meets the bottom of the drop interface, forming a forward-facing bag as 

observed in the continuous acceleration case. However, since there is no force to maintain the 

motion, the drop eventually resumes its initial shape. The drop with We = 54.7 in (d), on the 

other hand, shows increased initial deformation which results in a bigger rim that is connected 

by a forward-facing bag. In case of zero surface tension in (e), the drop displays a roll-up of the 

interface. A similar roll-up has been observed in the constant acceleration cases for drops with no 

surface tension. 

In Figure 21, the normalized aspect ratio, centroid velocity, and surface area are plotted versus 

t* in (a)-(c), respectively for the drops shown in Figure 20. The aspect ratio plot shows shape os- 

cillation for the two lower values of We. For higher We, the aspect ratio decreases monotonically 

to zero as the indentation deepens progressively. The velocity plot in (b) shows a rapid decline 

initially. Later, the velocity of the drops with We = 2.73 and 13.7 decreases but with fluctua- 

tions. The velocities of the drops with three higher Weber numbers decrease monotonically until 

it reaches a minimum and starts to increase again. The surface area plot in (c) show the effect of 

We on deformation: As We increases, the slope of the curve increases. 

In Figure 22, the evolution of a drop with pd/p0 = 10 is shown for Re = 242 and pd/ßo = 

1.25. Results for ten We = 3.74,12.5,18.7,28.1,37.4,46.8,56.1,74.8,93.5 andoo are compared. 

The computation was done using a 256 x 512 grid. The effect of increasing We is generally similar 

to the small density ratio case. The drop in (a) with We = 3.74 shows oscillatory deformation. 
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The drops with We = 12.5 and 18.7 in (b) and (c) develop an indentation at the top and deform 

into a forward-facing bag shape. As the velocity continues to decrease, the deformation of the 

drops eventually is reduced. At later stages of the deformation, the drops assume a shape concave 

to the incoming flow or a backward-facing bag. The Weber numbers for the drops are in the 

range where a bag breakup mode is observed experimentally for higher density ratios. In order 

for the backward-facing bag to grow, higher initial momentum is necessary. The drop in (d) with 

We = 28.1 shows more clearly the development of a backward-facing bag. The results for even 

higher Weber numbers shown in (e)-(i) show, on the other hand, the formation of a forward-facing 

bag. The drop with zero surface tension in (j) also displays a forward-facing bag. In this case 

small scale irregularities are observed both on the edge and on the top surface of the drop. 

The aspect ratio, centroid velocity and surface area of some of the drops shown in Figure 22 

are plotted versus t* in Figure 23. The aspect ratio plot displays an oscillation of the drop with 

the lowest We and monotonic decrease for the other drops. When the drops with We = 12.5 

and 18.7 start to resume their initial shape, an abrupt increase in the aspect ratio is observed. The 

velocity plot shows a monotonic decline for all We shown. Unlike the result for the small density 

ratio shown in Figure 21(b), no fluctuations occurs. The surface area plot shows that the rate of 

deformation increases with We. 

In Figure 24 and 25, vorticity contours (left) and streamlines (right) at selected times are plotted 

along with the drop contour for the We = 28.1 and We = 93.5 drops shown in Figure 22(d) and 

(i) respectively. In both cases, the vorticity plots show that most of the vorticity is created at 

the outer edge of the drop, as expected. The streamline pattern for the We = 28.1 drop shows 

that the backward-facing bag is stretched upward in the downstream direction when the wake in 

the downstream detaches from the drop. On the other hand, the closed streamlines around the 

We = 93.5 drop suggests that the drop moves as a vortex ring, forming a forward-facing bag. 

In order to see the effect of the viscosity of the surrounding fluid, another computation has been 

done for Re = 387. The results are presented in Figure 26 for the same set of Weber numbers 

(We = 3.74,12.5,18.7,28.1,37.4,46.8,56.1,74.8,93.5, and oo) as in Figure 22. pd/p0 is 10 and 

Hd/Ho is 2. Despite the change in the Reynolds number and the viscous ratio, the overall evolution 
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of the drops is very similar. The only difference is in the small structure of the drop contour. The 

aspect ratio, centroid velocity, and surface area plotted versus t* for selected cases in Figure 27 

also display very similar behavior as in Figure 23. 

Two other series of computations are shown for Reynolds numbers, Re = 121 in Figure 28 

and Re = 60.5 in Figure 29. The viscosity ratios, fid/p.0, are 0.625 and 0.3125, respectively. The, 

density ratio is 10 in both cases. Again, results are presented for the same set of Weber numbers 

as used in Figures 22 and 26. Comparing the results in Figures 22, 26, 28, and 29, it is clear that 

progressively higher Weber numbers are necessary in order to observe the same mode of defor- 

mation, as the Reynolds number decreases. The translation of the boundaries between different 

deformation modes—oscillation, backward-facing bag, and forward-facing bag—to higher We is 

clearly due to the increased viscous dissipation. 

In Figure 30, the effect of drop viscosity is shown for drops with pd/p0 = 10 and Re = 242. 

The figures in each frame denotes the dimensionless time when the drop is plotted. In the top row, 

four cases are compared for different drop viscosity (represented by the Reynolds number based on 

drop properties) at a fixed Weber number, We = 28.1. As the drop viscosity is increased from left 

to right by an order of 103, the drop deformation is greatly reduced. The least viscous drop with 

Red = 1.935 x 103 clearly shows the formation of a backward-facing bag, while the most viscous 

drop with Red - 1.935 remains in an oblate shape. In the middle row, a similar comparison is 

made for We = 56.1. Again, by increasing the drop viscosity, the drop deformation is reduced 

and the drop changes from a forward-facing bag to an oblate drop. The result for We = 93.5 

drops shown in the bottom row also displays a similar trend. 

Figure 31 presents another study of the effect of viscosity ratio at Re = 387 and pd/p0 — 10. 

The overall trend is similar to that observed in Figure 30 for Re - 242. As the drop viscosity 

is increased at a fixed Weber number, the large deformation in either backward-facing bag or 

forward-facing bag mode disappears. 

In Figure 32, a breakup map is shown to summarize the deformation of drops with pd/p0 = 10 

and Red = 1935. The horizontal and vertical axes represent the Reynolds number and the Weber 

number based on the ambient fluid, respectively.  The various breakup modes are denoted by 
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different symbols. When the Weber number is low, surface tension prevents large deformation so 

the drop only oscillates. As the Weber number increases past a critical value (approximately 16), a 

backward-facing bag starts to emerge at higher Reynolds numbers first. When the Weber number is 

higher than approximately 30, the drops break up in a backward-facing bag mode for low Reynolds 

numbers and in a forward-facing bag mode at high Reynolds numbers. The transitions from the 

backward-facing bag mode to the forward-facing bag mode occur at progressively lower Reynolds 

numbers as the Weber number increases. This trend continues until the Weber number reaches 

approximately 100 and all drops break up in the forward-facing bag mode for the Reynolds number 

range examined. Finally, when the surface tension vanishes (We -»• oo), the strong shear due to 

the outside flow peels off the drop interface and shear breakup is observed when the Reynolds 

number is greater than 100. 

B. Conclusion 

To study the characteristics of impulsively accelerated drops, numerical simulations have been 

done for two density ratios, 1.15 and 10. These values of pd/p0 are lower than those used in most 

of the experimental investigations of the drop breakup due to impulsive disturbance and therefore 

of more relevance to high pressure sprays. At low We (< 10), the drops display oscillatory defor- 

mation. As We increases, an indentation develops at the top of the drops. Since the velocity and 

the aerodynamic forces causing deformation continue to decrease, the surface tension eventually 

takes over and the drops resume the initial spherical shape. 

The formation of a backward-facing bag is observed only for a finite density ratio (10). The 

absence of a growing backward-facing bag confirms the general observation that the disruptive 

aerodynamic force must be imposed for a sufficiently long duration of time, as in the case of 

a continuously accelerating drop (for example, see Sadhal, Ayyaswamy, and Chung28). In our 

simulations, the velocity decreases too fast for the backward facing bag to grow when the density 

ratio is low. 

When We is further increased, the initial deformation is so large that a forward-facing bag is 
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formed. It is expected that in order to obtain a shear breakup where a film is stripped from the 

main drop, simulations for even higher density ratio is necessary. 

V. SHEAR BREAKUP OF IMMISCIBLE FLUID INTERFACES 

To start looking at the shear breakup of jets, several two-dimensional simulations of immis- 

cible periodic shear layers were done. The Reynolds numbers were selected to be sufficiently 

high so that the initial instability was well predicted by inviscid theory, but viscous effects became 

important at larger amplitude. The linear stability analysis predicts that surface tension stabilizes 

short waves and yields a wavelength with a largest linear growth rate (most unstable wave). Gen- 

erally, it was found that the inviscidly most unstable mode saturates quickly and perturbations of 

longer wavelength are the ones that grow to larger amplitude. Exactly which wavelength is the 

most dangerous one depends on the Reynolds number. Two sets of simulations were conducted, 

one at zero density differences and the other at density ratios of ten. For zero stratification, sur- 

face tension prevents Kelvin-Helmholtz roll-up as seen for miscible fluids and fingers of one fluid 

penetrate the other fluid. The slope of these fingers depends on the nondimensional wavelength 

(Weber number). While viscous effects limit the growth of the fingers at low Weber numbers, high 

Weber number fingers can become very long. At even higher Weber numbers the interface start to 

exhibit a behavior more similar to the classical nonlinear Kelvin-Helmholtz instability and rollup. 

The transition, however, is complex and intermediate states where the interface folds over once 

before being stretched into a long finger were found, for example. At larger density ratios, the 

evolution is no longer symmetric and waves of the heavy liquid grow into the lighter one. As for 

zero stratification, waves with wavelength close to the most unstable one are generally stabilized 

at large amplitude by viscous effects but longer wavelengths lead to a "wave breaking" where a 

finger of the heavy fluid is pulled into the lighter fluid. Even in the two-dimensional simulations, 

these fingers eventually break down into drops. The slope of the "fingers" and the size of the 

resulting drops depend on the nondimensional wavelength (Weber number). 

These preliminary studies have been described in G. Tryggvason and S.O. Unverdi.  "The 
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Shear Breakup of an Immiscible Fluid Interface" published in "Fluid Dynamics at Interfaces" (Ed. 

W. Shyy) Cambridge University Press, 1999. A more detailed examination of the breakup of 

immiscible fluid interfaces has been conducted under an AASERT contract (F49620-97-1-0525). 

VI. THREE-DIMENSIONAL SIMULATIONS OF DROP BREAKUP 

While axisymmetric simulations capture well the initial evolution of drops that are breaking up, 

the eventual breakup is a fully three-dimensional process. During bag breakup, the rim generally 

undergoes Rayleigh-Taylor instability and forms drops that are considerably larger than drops that 

are formed when the bag breaks. The sheet that is pulled from the edge of drops undergoing shear 

breakup is also likely to become three-dimensional before it breaks into drops. In some cases, 

particularly at low Eötvös and Weber numbers and in the transition zone between a bag and a 

shear breakup the process can be fully three-dimensional right from the start. To begin examining 

the three-dimensional aspects of drop breakup, several computations have been done of drops 

accelerated by a constant body force in both the bag and the shear breakup mode. Drops in bag 

breakup mode become three-dimensional quickly, but so far, the computations have not shown the 

development of three-dimensional structures in the shear breakup mode. 

Figure 33 shows four frames from one simulation of a drop undergoing bag breakup and the 

development of three-dimensional instabilities. The computation is done in a fully periodic domain 

on a 643 grid. To resolve the drop as well as possible, it is taken to be 0.4 times the size of the 

domain. The density ratio here is 2, and the Ohnesorge numbers are Ohd = 0.5 and Oh0 = 0.3536. 

The Eötvös number is Eo = 160 and since the fluids are very viscous the drop breaks up in a bag- 

breakup mode. In the first frame the drop has developed an indentation at the back that grows 

until the drop consists of a "bowl" with a thin bottom and a thick rim. The bottom of the "bowl" 

is pushed back by the difference between the stagnation pressure at the front of the drop and the 

low pressure in the wake. As the bag expands, the rim becomes unstable and starts breaking up 

into few relatively large drops. The formation of small scales eventually results in structures that 

are not well resolved, and the computations are terminated when this happens. To compute the 
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breakup for lower Ohnesorge numbers, finer resolution is necessary. 

VH. SIMULATIONS OF HEAT TRANSFER DURING BREAKUP 

The ultimate reason for atomizing a fuel jet is to increase the evaporation rate of the fuel. 

Before evaporation, the fuel must heat up. As fuel drops break up, their surface area increases 

greatly and therefore the heat transfer to the drop. To examine the heat transfer, several simulations 

have been done that include the solution of the unsteady energy equation. If heat generation due 

to viscous friction and radiation heat transfer is neglected, the energy equation is: 

dP^ + V.(pCpT) = V-kVT. (26) 

This equation is solved on a fixed grid by an explicit second order method in the same way as 

the momentum equation. Figure 34(a) shows average temperature of the three drops versus time 

and Figure 34(b) shows the normalized heat transfer rate, obtained by differentiating the data in 

Figure 34(a) and dividing by temperature: 

h =      1      d— (21) 
T^-Tdt 

The Ohnesorge number is 0.05, pd/p0 = 1.15, nd/fi0 = 0.2, CpJcPo = 1, kd/k0 = 0.2, and the 

Eötvös number is 2.4, 24, and 144. For the lowest Eo, the drop remains almost spherical, for 

Eo = 24 the drop forms a backward facing bag, and for the highest Eo, the drop evolves in the 

shear breakup mode. Since the highest Eo drop has reached the temperature of the ambient fluid 

by time 20, the heat transfer coefficient has not been computed after that time. Initially the drops 

gain heat at approximately the same rate, but as they start to deform, the rate depends strongly 

on the breakup mode. The heat transfer rate is slowest for the nearly spherical drop and quickly 

increases as the Eo increases. For the spherical drop the heat transfer rate decreases as the thermal 

boundary layer grows and then oscillates weakly as the drop shape oscillates. The heat transfer 

coefficient for the drop that evolves into a bag-breakup mode first decreases and then increases 

slightly. The heat transfer for the higher Eo drops initially increases rapidly as the drop deforms, 
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and even though it drops again, it still remains about three times higher than for the lower Eo 

drops. 

The temperature field and the drop contour are plotted for all three cases in Figure 35. The 

spherical drop is plotted at t - 28, the bag-breakup drop at t = 28, and the shear breakup drop at 

t = 4. The temperature field around the spherical drops shows that recirculation inside the drops 

leads to a ring of cold fluid near the front of the drop and a steep temperature gradient near the 

front of the drop. As the drop heats up, the ambient fluid cools down and a cold thermal wake 

extends downstream from the drop. The temperature field inside the drop undergoing bag breakup 

is very different. There is essentially no recirculation inside the drop and the coldest fluid is at the 

centerline of the drop. Since there is a large wake behind the drop, the cold thermal wake is much 

larger than for the low Eo drop. The drop undergoing shear breakup has only a small thermal 

wake, but the large deformation of the drop leads to a large heat transfer rate. As the results in 

section C showed the rate of increase of surface area increases greatly as Eo is increased. However, 

the flow field is also different and convective heat transfer changes. How much of the increased 

heat transfer can be attributed to increased surface area and how much to increased convection has 

not been examined in detail yet. 
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FIGURES 

FIG. 1. Schematic illustration of the computational setup. 

FIG. 2. Resolution test. The breakup of a drop computed using a 256 x 512 grid (left) and a 512 x 1024 

grid (right). pd/p0 = 1.15, Eo = 144, Oh0 = 0.05, Ohd = 0.0466. The drop shape is plotted every 

At*p = 3.873. 

FIG. 3. Resolution test. Aspect ratio and centroid velocity plotted versus t*. Results us- 

ing three different grids, 128 x 256, 256 x 512, and 512 x 1024, are shown. pd/p0 = 1.15, 

Eo = 144, Oh0 = 0.05, Ohd = 0.0466. 

FIG. 4. Test of the Boussinesq approximation. Aspect ratio and centroid velocity plotted versus i. 

Results are shown for four different Atwood numbers: 0.07, 0.11, 0.2, and 0.33. The corresponding density 

ratios are 1.15, 1.25,1.5, and 2.0. Eo = 72, Oh0 = 0-241, and pdfp,0 = 1. 

FIG. 5. Effect of Eo on the deformation of drops with pd/p0 = 10. Oh0 = Ohd = 0.05. The simula- 

tions are done using a 256 x 768 grid for a moving computational domain of dimensions 5x15 the initial 

drop diameter. The boundaries of the column do not indicate the actual boundaries of the computational 

domain. The gap between two successive drops in each column represents the distance the drop travels at 

a fixed time interval and the last interface is plotted at t* = (a) 11.19; (b) 15.82; (c) 14.85; (d) 13.83; (e) 

11.19; (f) 7.15; (g) 7.83; (h) 6.78; (i) 5.54. 

FIG. 6. Effect of Eo on the deformation of drop with pd/p0 = 1.15. Oh0 = 0.05, Ohd = 0.0466. The 

simulations are done using a 256 x 1280 grid in (b) and (c) and a 256 x 768 grid in (a), (d), and (e). The 

fixed computational domain has a dimension of 5 x 15 the initial drop diameter in (b) and (c) and 5 x 25 

the initial drop diameter in (a), (d), and (e). The dashed line in (a), (d), and (e) represents the actual bottom 

boundary of the computational domain. The gap between two successive drops in each column represents 

the distance the drop travels at a fixed time interval and the last interface is plotted at t* = (a) 44.72; (b) 

79.06; (c) 89.44; (d) 37.94; (e) 38.73. 
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FIG. 7. Vorticity contours (left) and streamlines (right) for the drop in Figure 5(c). pd/Po - 10, 

Eo = 28.8, Oh0 = Ohd = 0.05. The results are shown for four selected times. 

FIG. 8. Vorticity contours (left) and streamlines (right) for the drop in Figure 5(f). pd/Po = 10, 

Eo = 60, Oh0 = Ohd = 0.05. The results are shown for five selected times. 

FIG. 9. Vorticity contours (left) and streamlines (right) for the drop in Figure 6(e). pd/p0 = 1-15, 

Eo = 144, Oh0 = 0.05, Ohd = 0.0466. The results are shown for four selected times. 

FIG. 10. Centroid velocity versus t* for the drops shown in Figure 5. The results are presented for 

Eo = 12,24,28.8,36,48,60,72,96, and 144. pd/p0 = 10, Oh0 = Ohd = 0.05. 

FIG. 11. Centroid velocity versus t* for the drops shown in Figure 6. The results are presented for 

Eo = 12,24,48,96, and 144. pd/Po = 1.15, Oh0 = 0.05, Ohd = 0.0466. 

FIG. 12. Normalized surface area versus t* for the drops shown in Figure 5. The results are presented 

for Eo = 12,24,28.8,36,48,60,72,96, and 144. pd/p0 = 10, Oh0 = Ohd = 0.05. 

FIG. 13. Normalized surface area versus t* for the drops shown in Figure 6. The results are presented 

for Eo = 12,24,48,96, and 144. pd/p0 = 1.15, Oh0 = 0.05, Ohd = 0.0466. 

FIG. 14. Effect of Oh for drops with pd/p0 = 10- The drop evolution is shown for three 

Oh0 = Ohd = 0.05, 0.125, and 0.25. In the upper row (a)-(c), Eo is fixed at 28.8 and the time inter- 

val between successive interfaces, At*, is 2.121. In the lower row (d)-(f), Eo is 144 and At* is 0.791. 

FIG. 15. Effect of Oh on the initial deformation of drops with pd/p0 = 1.15. In all cases, pd/p0 = 1 

and the time intervals between successive interfaces, At* = 1.581. In the upper row (a)-(d), Eo = 24 and 

in the lower row (e)-(h), Eo = oo (zero surface tension). The viscous simulations (a)-(c) and (e)-(g) were 

done using a 128 x 384 grid, (d) and (h) were done using an inviscid vortex method. 
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FIG. 16. Effect of the viscosity ratio. In each row, the drops at a late time are shown for different values 

of the drop viscosity while other parameters are fixed. In (a) and (b), Ohd = 0.05,0.125,0.25, and 1.25 

(from left to right). In (c) and (d), Ohd = 0.0093,0.0466,0.2331, and 1.1656 (from left to right). 

FIG. 17. Centroid velocity versus t* for the drops shown in Figure 16. 

FIG. 18. Deformation and breakup regime maps for pd/p0 = 10. Three maps are shown for 

Oh0 = 0.05, 0.125 and 0.25. In each map, the horizontal and vertical axes are Ohd and Eo, respectively. 

FIG. 19. Deformation and breakup regime maps for pd/p0 = 1-15. Three maps are shown for 

Oh0 = 0.05,0.25 and 1.25. In each map, the horizontal and vertical axes are Ohd and Eo, respectively. 

FIG. 20. Evolution of impulsively started drops with Re = 331, pd/p0 = 1.15, and fid/Vo = 1- 

Results for five We are shown as denoted by the numbers below the figures. The numbers inside the frames 

denote t* when the interfaces are plotted. The computations were done on a 128 x 256 grid. 

FIG. 21. Non-dimensionalized aspect ratio, centroid velocity, and surface area plotted versus t* for the 

drops shown in Figure 20. Results for five We = 2.73, 13.7, 27.4, 54.7, and oo are compared. Re = 331, 

Pd/Po = 1.15 and p,d/p,0 = 1. 

FIG. 22. Evolution of impulsively started drops with Re = 242, pd/p0 — 10, and p,d/p0 = 1-25. 

Results for ten We are shown as denoted by the numbers below the figures. The numbers next to the drops 

denote t* when the interfaces are plotted. The centroid of the drops in a column are separated by a fixed 

distance. The gap between two successive drops in a column does not represents the distance the drop 

travels during the time interval. The computations were done on a 256 x 512 grid. 

FIG. 23. Non-dimensionalized aspect ratio, centroid velocity, and surface area plotted versus t* for 

selected cases of the drops shown in Figure 22. Results for five We = 3.74, 12.5, 18.7, 37.2, and 93.5 are 

compared. Re = 242, pd/p0 = 10 and p.d/p,0 = 1-25. 

FIG. 24. Vorticity contours (left) and streamlines (right) for the drop shown in Figure 22(d). 
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HG. 25. Vorticity contours (left) and streamlines (right) for the drop shown in Figure 22(i). 

FIG. 26. Evolution of impulsively started drops with Re = 387, Pd/Po = 10, and Hd/p-o = 2. Results 

for ten We are shown as denoted by the numbers below the figures. The numbers next to the drops denote 

t* when the interfaces are plotted. The centroid of the drops in a column are separated by a fixed distance. 

The gap between two successive drops in a column does not represents the distance the drop travels during 

the time interval. The computations were done on a 256 x 512 grid. 

FIG. 27. Non-dimensionalized aspect ratio, centroid velocity, and surface area plotted versus t* for 

selected cases of the drops shown in Figure 26. Results for five We = 3.74, 12.5, 18.7, 37.2, and 93.5 are 

compared. Re = 387, pd/p0 = 10 and p,d/p,0 = 2. 

FIG. 28. Evolution of impulsively started drops with Re = 121, Pd/Po = 10, and fXd/Po = 0.625. 

Results for ten We are shown as denoted by the numbers below the figures. The numbers next to the drops 

denote t* when the interfaces are plotted. The centroid of the drops in a column are separated by a fixed 

distance. The gap between two successive drops in a column does not represents the distance the drop 

travels during the time interval. The computations were done on a 256 x 512 grid. 

FIG. 29. Evolution of impulsively started drops with Re = 60.5, pd/p0 = 10, and pdlßo = 0.3125. 

Results for ten We are shown as denoted by the numbers below the figures. The numbers next to the drops 

denote t* when the interfaces are plotted. The centroid of the drops in a column are separated by a fixed 

distance. The gap between two successive drops in a column does not represents the distance the drop 

travels during the time interval. The computations were done on a 256 x 512 grid. 

FIG. 30. Drop viscosity effect on the deformation of drops with pd/p0 = 10 and Re = 242. The 

number in each frame denotes the dimensionless time when the drop is plotted. 

FIG. 31. Drop viscosity effect on the deformation of drops with pd/p0 = 10 and Re = 387. The 

number in each frame denotes the dimensionless time when the drop is plotted. 

FIG. 32. Breakup mode map for impulsively started drops with pd/p0 = 10 and Red = 1935. 
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HG. 33. Three-dimensional simulation of drop breakup. pd/p0 = 2, Eo = 160, Ohd = 0.5, and 

Oh0 = 0.3536. 

HG. 34. Simulations of heat transfer during drop breakup for Eo = 2.4,24, and 144. Average tempera- 

ture of the drops (a) and normalized heat transfer rate (b) are plotted versus time. Oh = 0.05, pd/p0 = 1-15, 

fid/ßo = 0.2, Cpd/cp0 = 1, and kd/k0 = 0.2 

FIG. 35. Temperature field and drop contour are plotted for the drops shown in Figure 34 at selected 

times. 
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(a) t* = 3.06 (b) t* = 4.08 (c) t* = 5.10 (d) t* = 6.12 (e) t' = 7.14 
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(a) f = 3.87 (b) f = 7.75 (c) f = 11.6 (d) t* = 15.5 



Figure 10 45 

Vc     1.5 



Figure 11 46 

0.35 

0.25- 

0.15- 

0.05 

t* 



Figure 12 47 

t* 



Figure 13 48 

S/So 



Figure 14 49 

) ) 

■0 

0 

0 

(a) Oh = 0.05 (b) Oh = 0.125 (c) Oh = 0.25 

•*0 

(d) Oft = 0.05 (e) Oh = 0.125 (f) Oh = 0.25 



Figure 15 50 
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(a) t = 0.25 

(b) t = 7.75 

(c) t = 15.5 

(d) t = 20.0 
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(a) Eo = 2.4 

(b) Eo = 24 
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